3.284 \(\int \frac {(d^2-e^2 x^2)^p}{x^4 (d+e x)^2} \, dx\)

Optimal. Leaf size=145 \[ -\frac {\left (d^2-e^2 x^2\right )^{p-1}}{3 x^3}-\frac {2 e^2 (4-p) \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \left (d^2-e^2 x^2\right )^p \, _2F_1\left (-\frac {1}{2},2-p;\frac {1}{2};\frac {e^2 x^2}{d^2}\right )}{3 d^4 x}-\frac {e^3 \left (d^2-e^2 x^2\right )^{p-1} \, _2F_1\left (2,p-1;p;1-\frac {e^2 x^2}{d^2}\right )}{d^3 (1-p)} \]

[Out]

-1/3*(-e^2*x^2+d^2)^(-1+p)/x^3-2/3*e^2*(4-p)*(-e^2*x^2+d^2)^p*hypergeom([-1/2, 2-p],[1/2],e^2*x^2/d^2)/d^4/x/(
(1-e^2*x^2/d^2)^p)-e^3*(-e^2*x^2+d^2)^(-1+p)*hypergeom([2, -1+p],[p],1-e^2*x^2/d^2)/d^3/(1-p)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {852, 1807, 764, 266, 65, 365, 364} \[ -\frac {e^3 \left (d^2-e^2 x^2\right )^{p-1} \, _2F_1\left (2,p-1;p;1-\frac {e^2 x^2}{d^2}\right )}{d^3 (1-p)}-\frac {2 e^2 (4-p) \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \left (d^2-e^2 x^2\right )^p \, _2F_1\left (-\frac {1}{2},2-p;\frac {1}{2};\frac {e^2 x^2}{d^2}\right )}{3 d^4 x}-\frac {\left (d^2-e^2 x^2\right )^{p-1}}{3 x^3} \]

Antiderivative was successfully verified.

[In]

Int[(d^2 - e^2*x^2)^p/(x^4*(d + e*x)^2),x]

[Out]

-(d^2 - e^2*x^2)^(-1 + p)/(3*x^3) - (2*e^2*(4 - p)*(d^2 - e^2*x^2)^p*Hypergeometric2F1[-1/2, 2 - p, 1/2, (e^2*
x^2)/d^2])/(3*d^4*x*(1 - (e^2*x^2)/d^2)^p) - (e^3*(d^2 - e^2*x^2)^(-1 + p)*Hypergeometric2F1[2, -1 + p, p, 1 -
 (e^2*x^2)/d^2])/(d^3*(1 - p))

Rule 65

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)*Hypergeometric2F1[-m, n +
 1, n + 2, 1 + (d*x)/c])/(d*(n + 1)*(-(d/(b*c)))^m), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Inte
gerQ[m] || GtQ[-(d/(b*c)), 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 764

Int[(x_)^(m_.)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[f, Int[x^m*(a + c*x^2)^p, x]
, x] + Dist[g, Int[x^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, f, g, p}, x] && IntegerQ[m] &&  !IntegerQ[2
*p]

Rule 852

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[((f + g*x)^n*(a + c*x^2)^(m + p))/(d - e*x)^m, x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1807

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[(R*(c*x)^(m + 1)*(a + b*x^2)^(p + 1))/(a*c*(m + 1)), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rubi steps

\begin {align*} \int \frac {\left (d^2-e^2 x^2\right )^p}{x^4 (d+e x)^2} \, dx &=\int \frac {(d-e x)^2 \left (d^2-e^2 x^2\right )^{-2+p}}{x^4} \, dx\\ &=-\frac {\left (d^2-e^2 x^2\right )^{-1+p}}{3 x^3}-\frac {\int \frac {\left (6 d^3 e-2 d^2 e^2 (4-p) x\right ) \left (d^2-e^2 x^2\right )^{-2+p}}{x^3} \, dx}{3 d^2}\\ &=-\frac {\left (d^2-e^2 x^2\right )^{-1+p}}{3 x^3}-(2 d e) \int \frac {\left (d^2-e^2 x^2\right )^{-2+p}}{x^3} \, dx+\frac {1}{3} \left (2 e^2 (4-p)\right ) \int \frac {\left (d^2-e^2 x^2\right )^{-2+p}}{x^2} \, dx\\ &=-\frac {\left (d^2-e^2 x^2\right )^{-1+p}}{3 x^3}-(d e) \operatorname {Subst}\left (\int \frac {\left (d^2-e^2 x\right )^{-2+p}}{x^2} \, dx,x,x^2\right )+\frac {\left (2 e^2 (4-p) \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p}\right ) \int \frac {\left (1-\frac {e^2 x^2}{d^2}\right )^{-2+p}}{x^2} \, dx}{3 d^4}\\ &=-\frac {\left (d^2-e^2 x^2\right )^{-1+p}}{3 x^3}-\frac {2 e^2 (4-p) \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (-\frac {1}{2},2-p;\frac {1}{2};\frac {e^2 x^2}{d^2}\right )}{3 d^4 x}-\frac {e^3 \left (d^2-e^2 x^2\right )^{-1+p} \, _2F_1\left (2,-1+p;p;1-\frac {e^2 x^2}{d^2}\right )}{d^3 (1-p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.41, size = 334, normalized size = 2.30 \[ \frac {\left (d^2-e^2 x^2\right )^p \left (-\frac {36 d^2 e^2 \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (-\frac {1}{2},-p;\frac {1}{2};\frac {e^2 x^2}{d^2}\right )}{x}-\frac {24 d e^3 \left (1-\frac {d^2}{e^2 x^2}\right )^{-p} \, _2F_1\left (-p,-p;1-p;\frac {d^2}{e^2 x^2}\right )}{p}-\frac {4 d^4 \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (-\frac {3}{2},-p;-\frac {1}{2};\frac {e^2 x^2}{d^2}\right )}{x^3}-\frac {12 d^3 e \left (1-\frac {d^2}{e^2 x^2}\right )^{-p} \, _2F_1\left (1-p,-p;2-p;\frac {d^2}{e^2 x^2}\right )}{(p-1) x^2}+\frac {3 e^3 2^{p+3} (e x-d) \left (\frac {e x}{d}+1\right )^{-p} \, _2F_1\left (1-p,p+1;p+2;\frac {d-e x}{2 d}\right )}{p+1}+\frac {3 e^3 2^p (e x-d) \left (\frac {e x}{d}+1\right )^{-p} \, _2F_1\left (2-p,p+1;p+2;\frac {d-e x}{2 d}\right )}{p+1}\right )}{12 d^6} \]

Antiderivative was successfully verified.

[In]

Integrate[(d^2 - e^2*x^2)^p/(x^4*(d + e*x)^2),x]

[Out]

((d^2 - e^2*x^2)^p*((-4*d^4*Hypergeometric2F1[-3/2, -p, -1/2, (e^2*x^2)/d^2])/(x^3*(1 - (e^2*x^2)/d^2)^p) - (3
6*d^2*e^2*Hypergeometric2F1[-1/2, -p, 1/2, (e^2*x^2)/d^2])/(x*(1 - (e^2*x^2)/d^2)^p) - (12*d^3*e*Hypergeometri
c2F1[1 - p, -p, 2 - p, d^2/(e^2*x^2)])/((-1 + p)*(1 - d^2/(e^2*x^2))^p*x^2) + (3*2^(3 + p)*e^3*(-d + e*x)*Hype
rgeometric2F1[1 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/((1 + p)*(1 + (e*x)/d)^p) + (3*2^p*e^3*(-d + e*x)*Hyperge
ometric2F1[2 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/((1 + p)*(1 + (e*x)/d)^p) - (24*d*e^3*Hypergeometric2F1[-p,
-p, 1 - p, d^2/(e^2*x^2)])/(p*(1 - d^2/(e^2*x^2))^p)))/(12*d^6)

________________________________________________________________________________________

fricas [F]  time = 0.95, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{e^{2} x^{6} + 2 \, d e x^{5} + d^{2} x^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^p/x^4/(e*x+d)^2,x, algorithm="fricas")

[Out]

integral((-e^2*x^2 + d^2)^p/(e^2*x^6 + 2*d*e*x^5 + d^2*x^4), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{{\left (e x + d\right )}^{2} x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^p/x^4/(e*x+d)^2,x, algorithm="giac")

[Out]

integrate((-e^2*x^2 + d^2)^p/((e*x + d)^2*x^4), x)

________________________________________________________________________________________

maple [F]  time = 0.07, size = 0, normalized size = 0.00 \[ \int \frac {\left (-e^{2} x^{2}+d^{2}\right )^{p}}{\left (e x +d \right )^{2} x^{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-e^2*x^2+d^2)^p/x^4/(e*x+d)^2,x)

[Out]

int((-e^2*x^2+d^2)^p/x^4/(e*x+d)^2,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{{\left (e x + d\right )}^{2} x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^p/x^4/(e*x+d)^2,x, algorithm="maxima")

[Out]

integrate((-e^2*x^2 + d^2)^p/((e*x + d)^2*x^4), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (d^2-e^2\,x^2\right )}^p}{x^4\,{\left (d+e\,x\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d^2 - e^2*x^2)^p/(x^4*(d + e*x)^2),x)

[Out]

int((d^2 - e^2*x^2)^p/(x^4*(d + e*x)^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{p}}{x^{4} \left (d + e x\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e**2*x**2+d**2)**p/x**4/(e*x+d)**2,x)

[Out]

Integral((-(-d + e*x)*(d + e*x))**p/(x**4*(d + e*x)**2), x)

________________________________________________________________________________________